35. Insert Interval
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
Example 3:
Input: intervals = [], newInterval = [5,7]
Output: [[5,7]]
Example 4:
Input: intervals = [[1,5]], newInterval = [2,3]
Output: [[1,5]]
Example 5:
Input: intervals = [[1,5]], newInterval = [2,7]
Output: [[1,7]]
Solution:
Insert and Merge
class Solution
{
public:
vector<vector<int>> insert(vector<vector<int>> &intervals, vector<int> &newInterval)
{
int i = 0;
while (i < intervals.size())
{
if (intervals[i][0] >= newInterval[0])
{
break;
}
i++;
}
intervals.insert(intervals.begin() + i, newInterval);
vector<vector<int>> res;
int idx = 0;
for (int i = 1; i < intervals.size(); i++)
{
if (intervals[i][0] <= intervals[idx][1])
{
intervals[idx][0] = min(intervals[i][0], intervals[idx][0]);
intervals[idx][1] = max(intervals[i][1], intervals[idx][1]);
}
else
{
res.push_back({intervals[idx][0], intervals[idx][1]});
idx = i;
}
}
res.push_back({intervals[idx][0], intervals[idx][1]});
return res;
}
};
Time Complexity: O(n)
Last updated
Was this helpful?