8. Convert Sorted List to Binary Search Tree
Given the head
of a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Input: head = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
Example 2:
Input: head = []
Output: []
Example 3:
Input: head = [0]
Output: [0]
Example 4:
Input: head = [1,3]
Output: [3,1]
Solution: (Using Recursion)
Finding the middle of linked list and creating tree
class Solution
{
public:
ListNode *findMid(ListNode *head)
{
if (head == NULL)
{
return head;
}
ListNode *p = head;
ListNode *q = head;
ListNode *temp = NULL;
while (p && p->next)
{
temp = q;
q = q->next;
p = p->next->next;
}
if (temp)
{
temp->next = NULL;
}
return q;
}
TreeNode *createBst(ListNode *head)
{
if (head == NULL)
{
return NULL;
}
TreeNode *temp = new TreeNode;
if (head->next == NULL)
{
temp->val = head->val;
temp->left = NULL;
temp->right = NULL;
return temp;
}
ListNode *mid = findMid(head);
temp->val = mid->val;
temp->left = createBst(head);
temp->right = createBst(mid->next);
return temp;
}
TreeNode *sortedListToBST(ListNode *head)
{
return createBst(head);
}
};
Time Complexity: O(N logN) Space Complexity: O(logN)
Last updated
Was this helpful?