Given a directed acyclic graph (DAG ) of n
nodes labeled from 0 to n - 1, find all possible paths from node 0
to node n - 1
, and return them in any order.
The graph is given as follows: graph[i]
is a list of all nodes you can visit from node i
(i.e., there is a directed edge from node i
to node graph[i][j]
).
Example 1:
Copy Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:
Copy Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
Copy Example 3:
Input: graph = [[1],[]]
Output: [[0,1]]
Example 4:
Input: graph = [[1,2,3],[2],[3],[]]
Output: [[0,1,2,3],[0,2,3],[0,3]]
Example 5:
Input: graph = [[1,3],[2],[3],[]]
Output: [[0,1,2,3],[0,3]]
Solution: (DFS)
Copy class Solution
{
public:
void dfs(vector<vector<int>> graph, int src, int dest, vector<int> v, vector<vector<int>> &res)
{
if (src == dest)
{
v.push_back(src);
res.push_back(v);
return;
}
v.push_back(src);
for (int i = 0; i < graph[src].size(); i++)
{
dfs(graph, graph[src][i], dest, v, res);
}
return;
}
vector<vector<int>> allPathsSourceTarget(vector<vector<int>> &graph)
{
vector<int> v;
vector<vector<int>> res;
int n = graph.size();
dfs(graph, 0, n - 1, v, res);
return res;
}
};
Optimized some space by reusing the vector:
Copy class Solution
{
public:
void dfs(vector<vector<int>> graph, int src, int dest, vector<int> &v, vector<vector<int>> &res)
{
if (src == dest)
{
v.push_back(src);
res.push_back(v);
v.pop_back();
return;
}
v.push_back(src);
for (int i = 0; i < graph[src].size(); i++)
{
dfs(graph, graph[src][i], dest, v, res);
}
v.pop_back();
return;
}
vector<vector<int>> allPathsSourceTarget(vector<vector<int>> &graph)
{
vector<int> v;
vector<vector<int>> res;
int n = graph.size();
dfs(graph, 0, n - 1, v, res);
return res;
}
};
Time Complexity: O(v^v)