Given an array of integers nums and a positive integer k, find whether it's possible to divide this array into k non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Solution:
Approach:(Recursion and backtracking)
We use a subset array and a visited array
classSolution{public:boolcheckSubsetSum(vector<int> &nums,vector<int> &subsetSum,vector<bool> &visited,int targetSum,int idxArr,int k,int pos) {if (subsetSum[idxArr] == targetSum) {if (idxArr == k -1) {returntrue; }returncheckSubsetSum(nums, subsetSum, visited, targetSum, idxArr +1, k,0); }for (int i = pos; i <nums.size(); i++) {if (visited[i]) {continue; }if ((subsetSum[idxArr] +nums[i]) <= targetSum) {subsetSum[idxArr] +=nums[i];visited[i] =true;bool x =checkSubsetSum(nums, subsetSum, visited, targetSum, idxArr, k, i +1);if (x) {returntrue; }visited[i] =false;subsetSum[idxArr] -=nums[i]; } }returnfalse; }boolcanPartitionKSubsets(vector<int> &nums,int k) {if (k ==1) {returntrue; }int s =0;for (int i =0; i <nums.size(); i++) { s +=nums[i]; }if (s % k !=0) {returnfalse; }int targetSum = s / k; vector<int>subsetSum(k,0); vector<bool>visited(nums.size(),false);bool res =checkSubsetSum(nums, subsetSum, visited, targetSum,0, k,0);return res; }};