You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Example 3:
Input: nums = [1,-1], k = 1
Output: [1,-1]
Example 4:
Input: nums = [9,11], k = 2
Output: [11]
Example 5:
Input: nums = [4,-2], k = 2
Output: [4]
Solution : (Normal Sliding Window)
classSolution{public:intfindMax(vector<int> v,int start,int end) {int mx = INT_MIN;for (int i = start; i < end; i++) {if (v[i] > mx) { mx =v[i]; } }return mx; }vector<int> maxSlidingWindow(vector<int> &nums,int k) { vector<int> v;int mx =findMax(nums,0, k);for (int i =0; i <=nums.size() - k; i++) {v.push_back(mx);if (i + k <nums.size()) {if (nums[i + k] > mx) { mx =nums[i + k]; }if (nums[i] == mx) { mx =findMax(nums, i +1, i +1+ k); } } }return v; }};
Time Complexity: O(nk)
Solution II: (Using deque)
classSolution{public:vector<int> maxSlidingWindow(vector<int> &nums,int k) { vector<int> v; deque<int> q;for (int i =0; i < k; i++) {while (!q.empty() &&nums[i] >=nums[q.back()]) {q.pop_back(); }q.push_back(i); }for (int i =0; i <=nums.size() - k; i++) {v.push_back(nums[q.front()]);while (!q.empty() &&q.front() <= i) {q.pop_front(); }if (i + k <nums.size()) {while (!q.empty() &&nums[i + k] >=nums[q.back()]) {q.pop_back(); }q.push_back(i + k); } }return v; }};