13. Maximal Rectangle
Given a rows x cols
binary matrix
filled with 0
's and 1
's, find the largest rectangle containing only 1
's and return its area.
Example 1:
Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 6
Explanation: The maximal rectangle is shown in the above picture.
Example 2:
Input: matrix = []
Output: 0
Example 3:
Input: matrix = [["0"]]
Output: 0
Example 4:
Input: matrix = [["1"]]
Output: 1
Example 5:
Input: matrix = [["0","0"]]
Output: 0
Solution: (Using Stack)
Approach: Same as Largest Rectangle in a Histogram Problem Computing largest rectangle in each row
class Solution
{
public:
int maximalRectangle(vector<vector<char>> &matrix)
{
int n = matrix.size();
if(n == 0){
return 0;
}
int m = matrix[0].size();
vector<vector<int>> v(n + 1, vector<int>(m, 0));
for (int i = 1; i <= n; i++)
{
for (int j = 0; j < m; j++)
{
if (matrix[i - 1][j] == '1')
{
v[i][j] = 1 + v[i - 1][j];
}
else
{
v[i][j] = 0;
}
}
}
int maxArea = INT_MIN;
for (int i = 1; i <= n; i++)
{
stack<int> ls;
stack<int> rs;
vector<int> lm(m);
vector<int> rm(m);
// Left Limit
for (int j = 0; j < m; j++)
{
if (ls.empty())
{
lm[j] = 0;
ls.push(j);
}
else if (!ls.empty() && v[i][ls.top()] < v[i][j])
{
lm[j] = ls.top() + 1;
ls.push(j);
}
else
{
while (!ls.empty() && v[i][ls.top()] >= v[i][j])
{
ls.pop();
}
if (ls.empty())
{
lm[j] = 0;
}
else
{
lm[j] = ls.top() + 1;
}
ls.push(j);
}
}
// Right Limit
for (int j = m - 1; j >= 0; j--)
{
if (rs.empty())
{
rm[j] = m - 1;
rs.push(j);
}
else if (!rs.empty() && v[i][rs.top()] < v[i][j])
{
rm[j] = rs.top() - 1;
rs.push(j);
}
else
{
while (!rs.empty() && v[i][rs.top()] >= v[i][j])
{
rs.pop();
}
if (rs.empty())
{
rm[j] = m - 1;
}
else
{
rm[j] = rs.top() - 1;
}
rs.push(j);
}
}
for (int k = 0; k < rm.size(); k++)
{
int area = (rm[k] - lm[k] + 1) * v[i][k];
if (area > maxArea)
{
maxArea = area;
}
}
}
return maxArea;
}
};
Time Complexity: O(n * m) Space Compexity: O(n + m)
Last updated