Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Solution I: Dynamic Programming
Using an array to store LIS for each index.
class Solution
{
public:
int lengthOfLIS(vector<int> &nums)
{
int n = nums.size();
int i = 0;
int j = 1;
vector<int> v(n, 1);
while (j < n)
{
while (i <= j)
{
if (nums[i] < nums[j])
{
v[j] = max(v[j], v[i] + 1);
}
i++;
}
i = 0;
j = j + 1;
}
int max = 0;
for (int k = 0; k < n; k++)
{
if (v[k] > max)
{
max = v[k];
}
}
return max;
}
};
Time Complexity: O(N^2), Space Complexity: O(n)
Solution II: (DP + Binary Search)
class Solution
{
public:
int lengthOfLIS(vector<int> &nums)
{
if (nums.size() == 0)
{
return 0;
}
vector<int> lis;
lis.push_back(nums[0]);
for (int i = 1; i < nums.size(); i++)
{
int end = lis.size() - 1;
if (nums[i] > lis[end])
{
lis.push_back(nums[i]);
}
else
{
auto itr = lower_bound(lis.begin(), lis.end(), nums[i]);
int idx = itr - lis.begin();
lis[idx] = nums[i];
}
}
return lis.size();
}
};
Time Complexity: O(n log n)
Lower Bound Implementation
int lowerBound(vector<int> &v, int target)
{
int start = 0;
int end = v.size();
while (start < end)
{
int mid = (start + end) / 2;
if (target >= v[mid])
{
end = mid;
}
else
{
start = mid;
}
}
return start;
}