Given an integer n, return a list of all possible full binary trees withnnodes. Each node of each tree in the answer must have Node.val == 0.
Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.
A full binary tree is a binary tree where each node has exactly 0 or 2 children.
Example 1:
Input: n = 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
Example 2:
Input: n = 3
Output: [[0,0,0]]
Solution: (Recursion)
Approach:
We can create a FULL Binary Tree when we have odd no of nodes
Thus, for N N≥3, we can formulate the recursion: FBT(N)= [All trees with left child from FBT(x) and right child from FBT(N−1−x), for all x].
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
vector<TreeNode *> createFBT(int n)
{
vector<TreeNode *> v;
if (n == 1)
{
TreeNode *t = new TreeNode(0);
v.push_back(t);
return v;
}
if (n % 2 != 0)
{
for (int i = 1; i <= n - 2; i += 2)
{
vector<TreeNode *> lt = createFBT(i);
vector<TreeNode *> rt = createFBT(n - i - 1);
for (int i = 0; i < lt.size(); i++)
{
for (int j = 0; j < rt.size(); j++)
{
TreeNode *t = new TreeNode(0);
t->left = lt[i];
t->right = rt[j];
v.push_back(t);
}
}
}
}
return v;
}
vector<TreeNode *> allPossibleFBT(int N)
{
vector<TreeNode *> res = createFBT(N);
return res;
}
};
Time Complexity: O(2 ^ n)
Solution: (Optimized DP)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
unordered_map<int, vector<TreeNode *>> m;
vector<TreeNode *> createFBT(int n)
{
if (m.find(n) != m.end())
{
return m[n];
}
vector<TreeNode *> v;
if (n == 1)
{
TreeNode *t = new TreeNode(0);
v.push_back(t);
return v;
}
if (n % 2 != 0)
{
for (int i = 1; i <= n - 2; i += 2)
{
vector<TreeNode *> lt = createFBT(i);
vector<TreeNode *> rt = createFBT(n - i - 1);
for (int i = 0; i < lt.size(); i++)
{
for (int j = 0; j < rt.size(); j++)
{
TreeNode *t = new TreeNode(0);
t->left = lt[i];
t->right = rt[j];
v.push_back(t);
}
}
}
}
m[n] = v;
return v;
}
vector<TreeNode *> allPossibleFBT(int N)
{
vector<TreeNode *> res = createFBT(N);
return res;
}
};