5. K-Concatenation Maximum Sum
Given an integer array arr
and an integer k
, modify the array by repeating it k
times.
For example, if arr = [1, 2]
and k = 3
then the modified array will be [1, 2, 1, 2, 1, 2]
.
Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0
and its sum in that case is 0
.
As the answer can be very large, return the answer modulo 109 + 7
.
Example 1:
Input: arr = [1,2], k = 3
Output: 9
Example 2:
Input: arr = [1,-2,1], k = 5
Output: 2
Example 3:
Input: arr = [-1,-2], k = 7
Output: 0
Solution: (Kadane's Algorithm)
Approach:
Case 1: (k = 1)
Use Kadane's algo
Case 2: (sum > 0)
s1 + s2 + s3 + s4
suffix of s1 + (k-2) * s + prefix + s4
Kadanes (first two array) * (k-2) * s
Case 3: (sum < 0)
Kadanes (first two array)
class Solution
{
public:
long long int findMax(vector<int> &arr)
{
int m = 1000000007;
int s = 0;
int maxSum = 0;
for (int i = 0; i < arr.size(); i++)
{
s = s + arr[i];
maxSum = max(maxSum, s);
if (s < 0)
{
s = 0;
}
}
return maxSum;
}
int kConcatenationMaxSum(vector<int> &arr, int k)
{
int n = arr.size();
int m = 1000000007;
int maxSum = findMax(arr);
vector<int> v(2 * n);
for (int i = 0; i < 2 * n; i++)
{
v[i] = arr[i % n];
}
int maxSumMerged = findMax(v);
long long s = 0;
for (int i = 0; i < n; i++)
{
s = s + arr[i];
}
if (k == 1)
{
return maxSum;
}
if (s < 0)
{
return maxSumMerged;
}
int ans = (maxSumMerged + ((k - 2) * (s))) % m;
return ans;
}
};
Time Complexity:O(n)
Last updated
Was this helpful?