👨‍💻
Cracking-Interview
  • Data Structures and Algorithms
  • Arrays
    • 1. Two Sums
    • 2. Rotate Array
    • 3.Remove Duplicates from sorted array
    • 4.Merge Two Sorted Array
    • 5.Majority Element
    • 6.Rotate Image
    • 7.Merge Intervals
    • 8.Increasing Triplet Subsequence
    • 9.Set Matrix Zeroes
    • 10.Product of Array Except Self
    • 11.Container With Most Water
    • 12.Next Permutation
    • 13.Next Greater Element III
    • 14.Largest Number
    • 15.Candy
    • 16.Shortest Unsorted Continuous Subarray
    • 17.Sort Colors(Sort array of 0, 1, 2)
    • 18.Queue Reconstruction by Height
    • 19.Task Scheduler
    • 20.Trapping Rain Water
    • 21.Search a 2D Matrix II
    • 22. Spiral Matrix
    • 23.Median of Two Sorted Arrays
    • 24.Count inversion of an array
    • 25. Reverse Pairs
    • 26. Count Servers that Communicate
    • 27. 3Sum
    • 28. 4Sum
    • 29. Game of Life
    • 30. Sort the Matrix Diagonally
    • 31. Push Dominoes
    • 32. Corporate Flight Bookings
    • 33. Rotating the Box
    • 34. Interval List Intersections
    • 35. Insert Interval
    • 36. Minimum Moves to Equal Array Elements II
    • 37. Pairs of Songs With Total Durations Divisible by 60
    • 38. Remove Covered Intervals
    • Juggling Algorithm
    • Moore’s Voting Algorithm
    • Two Pointer Method
  • Linked List
    • 1.Odd-Even Linked List
    • 2.Add Two Numbers
    • 3. Insert in a Sorted List
    • 4.Rotate List
    • 5.Palindrome Linked List
    • 6.Point of insertion between two Linked List
    • 7.Delete Node in a Linked List
    • 8.Middle of the Linked List
    • 9.Linked List Cycle
    • 10. Swapping Nodes in a Linked List
    • 11.Swap Nodes in Pairs
    • 12.Merge Two Sorted Lists
    • 13.Reverse a Linked List
    • 14. Reverse Linked List II
    • 15.Copy List with Random Pointer
    • 16.Remove Duplicates from Sorted List
    • 17. Merge k Sorted Lists
    • 18. Remove Nth Node From End of List
    • 19. Sort List
    • 20. Reverse Nodes in k-Group
    • 21. Partition List
    • 22. Flattening a Linked List
    • Basic Implementation of Singly Linked List
    • Basic Implementation of Doubly Linked List
  • Strings
    • 1.Reverse Words in a String
    • 2. Is Subsequence
    • 3.Valid Anagram
    • 4.Add Binary
    • 5.Longest Common Prefix
    • 7.Valid Palindrome
    • 8.Implement strStr()
    • 9.String to Integer (atoi)
    • 10.Count and Say
    • 11.Longest Substring Without Repeating Characters
    • 12. Longest Substring with At Most K Distinct Characters
    • 13. Longest Substring with At Least K Repeating Characters
    • 14. Find All Anagrams in a String
    • 15. Permutation in String
    • 16. Maximum Number of Vowels in a Substring of Given Length
    • 17. Partition Labels
    • 18. Minimum Window Substring
    • 19. Compare Version Numbers
    • 20. Shortest Distance to a Character
    • 21. Count Number of Homogenous Substrings
    • 22. Remove Duplicate Letters
    • 23. Count Sorted Vowel Strings
    • 24. Get Equal Substrings Within Budget
    • 25. Sentence Similarity III
    • 26. Shifting Letters
    • 27. Longest Happy Prefix (imp)
    • 28. Sort Characters By Frequency
    • 29. String Compression
    • 30. Palindrome Pairs
    • 31. Shortest Palindrome(Imp)
    • 32. One Edit Distance
    • 33. Can Make Palindrome from Substring
    • 34. Greatest Common Divisor of Strings
    • KMP Algorithm for Pattern Searching
    • Rabin-Karp Algorithm for Pattern Searching
  • Binary Tree
    • Terminology and Formula
    • N-ary Tree
      • 1. N-ary Tree Preorder Traversal
      • 2. N-ary Tree Postorder Traversal
      • 3. N-ary Tree Level Order Traversal
    • Tree Traversals
      • 1.In-order Traversal
      • 2.Pre-order Traversal
      • 3.Post-order Traversal
      • 4.Level-order Traversal
      • 5.Vertical Order Traversal
      • 6. Binary Tree Level Order Traversal II
    • Problems Related to Binary Trees
      • 1.Maximum/Minimum Depth of Binary Tree
      • 2.Lowest Common Ancestor of a Binary Tree
      • 3.Symmetric Tree
      • 4.Path Sum
      • 5.Tree : Top View
      • 6. Diameter of Binary Tree
      • 7.Populating Next Right Pointers in Each Node
      • 8.Balanced Binary Tree
      • 9.Binary Tree Zigzag Level Order Traversal
      • 10.Invert Binary Tree
      • 11.Binary Tree Right Side View
      • 12.Validate Binary Tree Nodes
      • 13.Merge Two Binary Trees
      • 14.Flatten Binary Tree to Linked List
      • 15. Construct Binary Tree from Preorder and Inorder Traversal
      • 16. Construct Binary Tree from Inorder and Postorder Traversal
      • 17. Binary Tree Maximum Path Sum
      • 18. Sum Root to Leaf Numbers
      • 19. Subtree of Another Tree
      • 20. Even Odd Tree
      • 21. Delete Nodes And Return Forest
      • 22. Maximum Binary Tree
      • 23. Linked List in Binary Tree
      • 24. Longest Univalue Path
      • 25. Sum of Distances in Tree
      • 26. Distribute Coins in Binary Tree
      • 27. Find Duplicate Subtrees
      • 28. Serialize and Deserialize BST
      • 29. Serialize and Deserialize Binary Tree
      • 30. Path Sum III
      • 31. Delete Leaves With a Given Value
      • 32. All Possible Full Binary Trees
      • 33. All Nodes Distance K in Binary Tree
      • 34. Maximum Width of Binary Tree
  • Stack and Queue
    • Problems
      • 1.Min Stack
      • 2. Max Stack
      • 3.Valid Parentheses
      • 4.Evaluate Reverse Polish Notation
      • 5.Infix And Prefix and Postfix Conversions
      • 6.Next Greater Element I
      • 7.Next Greater Element II
      • 8.Sliding Window Maximum
      • 9.Gas Station (Circular Tour Problem)
      • 10.Daily Temperatures
      • 11.Decode String
      • 12. Largest Rectangle in Histogram
      • 13. Maximal Rectangle
      • 14. Minimum Remove to Make Valid Parentheses
      • 15. Map of Highest Peak
      • 16. Longest Valid Parentheses
      • 17. Online Stock Span
      • 18. Score of Parentheses
      • 19. Remove K Digits(imp)
      • 20. Design a Stack With Increment Operation
      • 21. Final Prices With a Special Discount in a Shop
      • 22. Valid Parenthesis String
      • 23. Reveal Cards In Increasing Order
      • 24. Remove All Adjacent Duplicates In String
      • 25. Number of Visible People in a Queue
      • 26.Number following a pattern
    • Implementation
      • Implementation of Queue
      • Implementation of Stack
      • Implementation of Circular Queue
      • Implement Queue using Stacks
      • Implement Stack using Queues
  • Hash Table
    • Designing and Definitions
      • Techniques of hashing and collision resolution
      • Design HashSet
      • Design HashMap
    • Problems
      • 1.Intersection of Two Arrays
      • 2.Happy Number
      • 3.Contains Duplicate
      • 4.Find the Duplicate Number
      • 5. Find All Duplicates in an Array
      • 6. Isomorphic Strings
      • 7. Group Anagrams
      • 8. Single Number
      • 9.Valid Sudoku
      • 10.Jewels and Stones
      • 11.First Missing Positive
      • 12. LRU Cache (V.IMP)
      • 13. Encode and Decode TinyURL
      • 14. Alphabet Board Path
  • Binary Search
    • Template I
      • Basic Binary Search
      • 1.Search in a Sorted Rotated Array
      • 5.Sqrt(x)
    • Template II
      • 2.Find Minimum in Rotated Sorted Array
    • Template III
      • 3.Find Peak Element
      • 4. Find First and Last Position of Element in Sorted Array
  • Binary Search Tree
    • 1.Is This a Binary Search Tree
    • 2.Search in a Binary Search Tree
    • 3.Insert into a Binary Search Tree
    • 4.Delete Node in a BST
    • 5.Lowest Common Ancestor of a Binary Search Tree
    • 6.Construct Binary Search Tree from Preorder Traversal
    • 7.Convert Sorted Array to Binary Search Tree
    • 8. Convert Sorted List to Binary Search Tree
    • 9.Kth Smallest Element in a BST
    • 10.Trim a Binary Search Tree
    • 11.Two Sum IV - Input is a BST
    • 12. Binary Search Tree to Greater Sum Tree / Greater Tree
    • 13. Balance a Binary Search Tree
    • 14. Binary Search Tree Iterator
    • 15. Unique Binary Search Trees
    • 16. Unique Binary Search Trees II
    • 17. Inorder Successor in BST
  • Bit manipulation
    • Bitwise Operations
    • 1.Reverse Bits
    • 2.Counting Bits
    • 3.Number of 1 Bits
    • 4.Hamming Distance
    • 5. Power of Two
    • 6. Complement of Base 10 Integer
  • Graph
    • 1.Maximum number of edges to be removed to contain exactly K connected components in the Graph
    • 2. Social Networking Graph
    • 3.The Flight Plan
    • 4.Is it a tree?
    • 5.Possible Bipartition
    • 6.Longest path in an undirected tree
    • 7.Keys and Rooms
    • 8.Is Graph Bipartite?
    • 9.Number of Islands
    • 10. Number of Provinces
    • 11.Surrounded Regions
    • 12. All Paths From Source to Target
    • 13.Word Ladder
    • 14.Rotting Oranges
    • 15.Course Schedule
    • 16.Course Schedule II
    • 17. Minimum Number of Vertices to Reach All Nodes
    • 18.Network Delay Time
    • 19. 01 Matrix
    • 20. Cheapest Flights Within K Stops
    • 21. Critical Connections in a Network
    • 22.Word Search
    • 23. Minimum Time to Collect All Apples in a Tree
    • 24. Time Needed to Inform All Employees
    • 25. As Far from Land as Possible
    • 26. Clone Graph
    • 27. Min Cost to Connect All Points
    • 28. Find the City With the Smallest Number of Neighbors at a Threshold Distance
    • 29. Number of Operations to Make Network Connected
    • 30. Open the Lock
    • 31. Word Search II
    • 32. Number of Ways to Arrive at Destination
    • 33. Knight On Chess Board
    • 34. Shortest Bridge
    • 35. Pacific Atlantic Water Flow
    • 36. Making A Large Island
    • 37. Path with Maximum Probability
    • Graph Algorithms
      • 1.DFS
      • 2.BFS
      • 3.Prim's MST
      • 4.Kruskal (MST)
      • 5.Dijkstra’s Algorithm(Single Source Shortest Path)
      • 6. Floyd Warshall's Algorithm(All Pair Sortest Path)
      • 7. Topological Sort
      • 8. Find if the given edge is a bridge in graph.
  • Disjoint Sets(Union-Find)
    • 1.Implementation of union find
    • 2.Social Network Community
    • 3. Graph Connectivity With Threshold
    • 4. Redundant Connection
    • 5. Smallest String With Swaps
    • 6. Accounts Merge
  • Heap and Priority Queue
    • Concepts of Heap
      • Building Max Heap
    • 1.Kth Largest Element in an Array
    • 2.Kth Largest Element in a Stream
    • 3.Top K Frequent Elements
    • 4.Kth Smallest Element in a Sorted Matrix
    • 5. Find Kth Largest XOR Coordinate Value
    • 6. Top K Frequent Words
    • 7. Find Median from Data Stream
    • 8. Maximum Average Pass Ratio
    • 9. Longest Happy String
    • 10. K Closest Points to Origin
    • 11. Reorganize String
    • 12. Find the Kth Largest Integer in the Array
    • 13. Smallest range in K lists
  • Trie
    • 1. Implement Trie (Prefix Tree)
    • 2. Replace Words
    • 3.Design Add and Search Words Data Structure
    • 4. Search Suggestions System
  • Dynamic Programming
    • 1.House Robber
    • 2.Climbing Stairs
    • 3.Longest Palindromic Substring
    • 4.Longest Palindromic Subsequence
    • 5.Best Time to Buy and Sell Stock
    • 6.Best Time to Buy and Sell Stock with Cooldown
    • 7.Unique Paths
    • 8.Minimum Path Sum
    • 9.Longest Increasing Subsequence
    • 10.Longest Common Subsequence
    • 11.Longest Consecutive Sequence
    • 12.Coin Change
    • 13.Coin Change 2
    • 14.Target Sum
    • 15.Partition Equal Subset Sum
    • 16. Last Stone Weight II
    • 17.Word Break
    • 18. Word Break II
    • 19.Burst Balloons
    • 20. Uncrossed Lines
    • 21. Wildcard Matching
    • 22. Maximal Square
    • 23. Perfect Squares
    • 24. Decode Ways
    • 25. Minimum Cost For Tickets
    • 26. Number of Dice Rolls With Target Sum
    • 27. Delete Operation for Two Strings
    • 28. Maximum Length of Repeated Subarray
    • 29. Longest String Chain
    • 30. Maximum Length of Pair Chain
    • 31. Minimum Falling Path Sum
    • 32. Predict the Winner
    • 33. Delete and Earn
    • 34. House Robber III
    • 35. Partition to K Equal Sum Subsets
    • 36. Different Ways to Add Parentheses
    • 37. Count Square Submatrices with All Ones
    • 38. 2 Keys Keyboard
    • 39. Palindrome Partitioning II
    • 40. Integer Break
    • 41.Cutting a Rod
    • 42. Number of Longest Increasing Subsequence
    • 43. Russian Doll Envelopes
    • 44. 0-1 Knapsack
    • 45. Interleaving String
    • 46. Edit Distance
    • 47. Minimum Insertion Steps to Make a String Palindrome
    • 48.Jump Game
    • 49. Shortest Common Supersequence
    • 50. Length of Longest Fibonacci Subsequence
    • 51. Maximum Alternating Subsequence Sum
    • 52. Palindromic Substrings
    • 53. Distinct Subsequences
    • 54. Best Team With No Conflicts
    • 55. Partition Array for Maximum Sum
    • 56. Ones and Zeroes
  • Greedy Algorithms
    • 1.Activity Selection
    • 2. N meetings in one room
    • 3.Minimum Platforms
    • 4. Car Pooling
    • 5. Maximum Population Year
    • 6.Meeting Rooms
    • 7. Equal Sum Arrays With Minimum Number of Operations
    • 8. Two City Scheduling
    • 9. Non-overlapping Intervals
    • 10. Minimum Number of Arrows to Burst Balloons
    • 11. Maximum Profit in Job Scheduling{IMP}
    • 12.Huffman Coding
    • 13. Minimum Cost Tree From Leaf Values
    • 14.Maximum Number of Events That Can Be Attended
    • 15. Video Stitching
    • 16. Minimum Number of Taps to Open to Water a Garden
  • Backtracking
    • 1.Subsets and Subset II
    • 2.Combinations
    • 3.Generate Parentheses
    • 4.Letter Combinations of a Phone Number
    • 5.Palindrome Partitioning
    • 6.Combination Sum and Combination Sum II
    • 7.Permutations
    • 8. Permutations II
    • 9. Letter Case Permutation
    • 10. Split a String Into the Max Number of Unique Substrings
    • 11. Path with Maximum Gold
    • 12. N-Queens
    • 13. N-Queens II
    • 14. Sudoku Solver
    • 15. Permutation Sequence
    • 16. Beautiful Arrangement
  • Sub Array and Sliding Window Problems
    • 1.Maximum Subarray Sum
    • 2.Maximum Product Subarray
    • 3.Maximum Sum Circular Subarray
    • 4. Maximum Absolute Sum of Any Subarray
    • 5. K-Concatenation Maximum Sum
    • 6.Subarray Sum Equals K
    • 7. Continuous Subarray Sum
    • 8. Contiguous Array
    • 9.Minimum Size Subarray Sum >=k (positive no)
    • 10. Max Subarray sum of positive no <= k
    • 11. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target
    • 12. Maximum Subarray Sum with One Deletion
    • 13. Shortest Subarray with Sum at Least K (Negative Numbers)
    • 14. Frequency of the Most Frequent Element
    • 15. Count Number of Nice Subarrays
    • 16. Binary Subarrays With Sum
    • 17.Number of Substrings Containing All Three Characters
    • 18. Find Two Non-overlapping Sub-arrays Each With Target Sum
    • 19. Maximum Points You Can Obtain from Cards
    • 20. Longest Repeating Character Replacement
    • 21. Subarrays with K Different Integers
    • 22. Replace the Substring for Balanced String
    • 23. Maximize the Confusion of an Exam / Max Consecutive Ones III
    • 24. Subarray Sums Divisible by K
  • Design
    • 1. Design Twitter
    • 2. Design Browser History
    • 3. Snapshot Array
  • Maths
    • Formula
    • 1.Count Prime
    • 2.Pascal's Triangle
    • 3.Extra Long Factorials
    • 4.Factorial Trailing Zeroes
    • 5.Excel Sheet Column Number
    • 6.HCF and LCM
    • 7. Fizz Buzz
    • 8. Rearrange an array so that arr[i] becomes arr[arr[i]]
    • 9. XOR Queries of a Subarray
    • 10. Find second largest element
  • Sorting-Algorithms
    • Merge Sort
    • Quick Sort
    • Heap Sort
    • Selection Sort
    • Bubble Sort
    • Insertion Sort
  • Expected Interview MCQ and Questions c++
  • Concepts in C++
  • System Design Questions
  • 💾DBMS
    • Introduction
    • RBMS
    • JOINS
    • SQL
  • 🖥️OS
    • OS and Its Types
    • Process Concept and Threads
    • Process Synchronization
    • Deadlock in Operating System
    • Memory Management
    • Imp Questions of OS for Interviews
  • 🚙OOPS
    • Introduction and Definitions
  • 📨COMPUTER-NETWORKS
    • OSI | TCP IP Model
    • Topology
    • Network Devices
    • IP Address
Powered by GitBook
On this page
  • What are the differences between SQL and PL/SQL?
  • Explain Operators of SQL.
  • SQL Arithmetic Operators
  • SQL Comparison Operators
  • SQL Logical Operators
  • What is the difference between CHAR and VARCHAR2 datatype in SQL?
  • SQL Commands
  • SQL | CREATE: The CREATE TABLE statement is used to create a table in SQL.
  • SQL | ALTER
  • SQL | UPDATE
  • SQL | DELETE Statement
  • SQL | DROP TRUNCATE
  • SQL | GROUP BY

Was this helpful?

  1. DBMS

SQL

What are the differences between SQL and PL/SQL?

PL/SQL

SQL

SQL is a query execution or commanding language

PL/SQL is a complete programming language

SQL is data oriented language

PL/SQL is a procedural language SQL is very declarative in nature .It is used for manipulating data. It is used for creating applications

We can execute one statement at a time in SQL

We can execute block of statements in PL/SQL

Explain Operators of SQL.

SQL Arithmetic Operators

Operator

Description

Example

+ (Addition)

Adds values on either side of

the operator.

a + b will

give 30

- (Subtraction)

Subtracts right hand operand

from left hand operand.

a - b will

give -10

*

(Multiplication)

Multiplies values on either side of the operator.

a * b will

give 200

/ (Division)

Divides left hand operand by

right hand operand.

b / a will

give 2

% (Modulus)

Divides left hand operand by

right hand operand and

returns remainder.

b % a will

give 0

SQL Comparison Operators

Description

Example

Checks if the values of two operands are equal or not, if yes then condition becomes true.

(a = b) is not

true.

Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.

(a != b) is

true.

Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.

(a <> b) is

true.

Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.

(a > b) is not

true.

Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.

(a < b) is

true.

Checks if the value of left operand is greater than or equal to the value of right operand, if yes then

condition becomes true.

(a >= b) is

not true.

Checks if the value of left operand is less than or equal to the value of right operand, if yes then

condition becomes true.

(a <= b) is

true.

Checks if the value of left operand is not less than the value of right operand, if yes then condition becomes true.

(a !< b) is

false.

Checks if the value of left operand is not greater than the value of right operand, if yes then condition becomes true.

(a !> b) is

true.

SQL Logical Operators

SQL Logical Operators

ALL

The ALL operator is used to compare a value to all values in another value set.

AND

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.

ANY

The ANY operator is used to compare a value to any applicable value in the list as per the condition.

BETWEEN

The BETWEEN operator is used to search for values that are within a set of values, given the minimum value and the maximum value.

EXISTS

The EXISTS operator is used to search for the presence of a row in a specified table that meets a certain criterion.

IN

The IN operator is used to compare a value to a list of literal values that have been specified.

LIKE

The LIKE operator is used to compare a value to similar values using wildcard operators.

NOT

The NOT operator reverses the meaning of the logical operator with which it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

OR

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

IS NULL

The NULL operator is used to compare a value with a NULL value.

UNIQUE

The UNIQUE operator searches every row of a specified table for uniqueness (no duplicates).

What is the difference between CHAR and VARCHAR2 datatype in SQL?

Both of these datatypes are used for characters but varchar2 is used for character strings of variable length whereas char is used for character strings of fixed length. For example, if we specify the type as char(5) then we will not be allowed to store

string of any other length in this variable but if we specify the type of this variable as varchar2(5) then we will be allowed to store strings of variable length, we can store a string of length 3 or 4 or 2 in this variable.

SQL Commands

SQL | CREATE: The CREATE TABLE statement is used to create a table in SQL.

CREATE TABLE table_name
(
column1 data_type(size),
column2 data_type(size),
column3 data_type(size),
....
);
CREATE TABLE Students
(
ROLL_NO int(3),
NAME varchar(20),
SUBJECT varchar(20),
);

SQL | ALTER

ALTER TABLE - ADD

ALTER TABLE table_name
              ADD (Columnname_1  datatype,
              Columnname_2  datatype,
              …
              Columnname_n  datatype);
              
              
ALTER TABLE Student ADD (AGE number(3),COURSE varchar(40));

ALTER TABLE - DROP

ALTER TABLE table_name
DROP COLUMN column_name;

 ALTER TABLE Student DROP COLUMN COURSE;

ALTER TABLE- MODIFY

ALTER TABLE table_name
MODIFY column_name column_type;

ALTER TABLE Student MODIFY COURSE varchar(20);

ALTER TABLE- RENAME

ALTER TABLE table_name
RENAME TO new_table_name;
ALTER TABLE table_name
RENAME COLUMN old_name TO new_name;

SQL | UPDATE

The UPDATE statement in SQL is used to update the data of an existing table in database.

UPDATE table_name SET column1 = value1, column2 = value2,... 
WHERE condition;


UPDATE Student SET NAME = 'PRATIK' WHERE Age = 20;
UPDATE Student SET NAME = 'PRATIK', ADDRESS = 'SIKKIM' WHERE ROLL_NO = 1;

Omitting WHERE clause: If we omit the WHERE clause from the update query then all of the rows will get updated.

SR.NO

ALTER Command

UPDATE Command

1

ALTER command is Data Definition Language (DDL).

UPDATE Command is a Data Manipulation Language (DML).

2

Alter command will perform the action on structure level and not on the data level.

Update command will perform on the data level.

3

ALTER Command is used to add, delete, modify the attributes of the relations (tables) in the database.

UPDATE Command is used to update existing records in a database.

SQL | DELETE Statement

The DELETE Statement in SQL is used to delete existing records from a table. We can delete a single record or multiple records depending on the condition we specify in the WHERE clause.

DELETE FROM table_name WHERE some_condition;

table_name: name of the table
some_condition: condition to choose particular record.

SQL | DROP TRUNCATE

DROP is used to delete a whole database or just a table.The DROP statement destroys the objects like an existing database, table, index, or view.

DROP object object_name

Examples:
DROP TABLE table_name;
table_name: Name of the table to be deleted.

DROP DATABASE database_name;
database_name: Name of the database to be deleted.

TRUNCATE statement is a Data Definition Language (DDL) operation that is used to mark the extents of a table for deallocation (empty for reuse). The TRUNCATE TABLE mytable statement is logically (though not physically) equivalent to the DELETE FROM mytable statement (without a WHERE clause).

TRUNCATE TABLE  table_name;
table_name: Name of the table to be truncated.
DATABASE name - student_data

DROP vs TRUNCATE

  • Truncate is normally ultra-fast and its ideal for deleting data from a temporary table.

  • Truncate preserves the structure of the table for future use, unlike drop table where the table is deleted with its full structure.

  • Table or Database deletion using DROP statement cannot be rolled back, so it must be used wisely

SQL | GROUP BY

PreviousJOINSNextOS and Its Types

Last updated 3 years ago

Was this helpful?

💾