Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
Solution: (Using Preorder Traversal)
classSolution{public:voidaddLeafNumbers(TreeNode*root,vector<int> &v,string num) {if (root->left ==NULL&&root->right ==NULL) {int x =stoi(num +to_string(root->val));v.push_back(x);return; }if (root->left) {addLeafNumbers(root->left, v, num +to_string(root->val)); }if (root->right) {addLeafNumbers(root->right, v, num +to_string(root->val)); }return; }intsumNumbers(TreeNode*root) {if (root ==NULL) {return0; } vector<int> v; string s ="";addLeafNumbers(root, v, s);int sum =0;for (int i =0; i <v.size(); i++) { sum +=v[i]; }return sum; }};
Using an extra space Complexity: O(N) N = Number of leaf nodes
Solution: Optimizing space complexity
classSolution{public:voidaddLeafNumbers(TreeNode*root,string num,int&sum) {if (root->left ==NULL&&root->right ==NULL) {int x =stoi(num +to_string(root->val)); sum = sum + x;return; }if (root->left) {addLeafNumbers(root->left, num +to_string(root->val), sum); }if (root->right) {addLeafNumbers(root->right, num +to_string(root->val), sum); }return; }intsumNumbers(TreeNode*root) {if (root ==NULL) {return0; } string s ="";int sum =0;addLeafNumbers(root, s, sum);return sum; }};