Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
Solution: (Using Preorder Traversal)
class Solution
{
public:
void addLeafNumbers(TreeNode *root, vector<int> &v, string num)
{
if (root->left == NULL && root->right == NULL)
{
int x = stoi(num + to_string(root->val));
v.push_back(x);
return;
}
if (root->left)
{
addLeafNumbers(root->left, v, num + to_string(root->val));
}
if (root->right)
{
addLeafNumbers(root->right, v, num + to_string(root->val));
}
return;
}
int sumNumbers(TreeNode *root)
{
if (root == NULL)
{
return 0;
}
vector<int> v;
string s = "";
addLeafNumbers(root, v, s);
int sum = 0;
for (int i = 0; i < v.size(); i++)
{
sum += v[i];
}
return sum;
}
};
Using an extra space Complexity: O(N) N = Number of leaf nodes
Solution: Optimizing space complexity
class Solution
{
public:
void addLeafNumbers(TreeNode *root, string num, int &sum)
{
if (root->left == NULL && root->right == NULL)
{
int x = stoi(num + to_string(root->val));
sum = sum + x;
return;
}
if (root->left)
{
addLeafNumbers(root->left, num + to_string(root->val), sum);
}
if (root->right)
{
addLeafNumbers(root->right, num + to_string(root->val), sum);
}
return;
}
int sumNumbers(TreeNode *root)
{
if (root == NULL)
{
return 0;
}
string s = "";
int sum = 0;
addLeafNumbers(root, s, sum);
return sum;
}
};