Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Solution : (using Max Heap)
class Solution
{
public:
int findKthLargest(vector<int> &nums, int k)
{
make_heap(nums.begin(),nums.end());
int j = 0;
while (j < k - 1)
{
pop_heap(nums.begin(),nums.end());
nums.pop_back();
j++;
}
return nums.front();
}
};
Time Complexity: O(n + k log(n) )
Heapify takes O(n) and deletion of k elements takes k * log (n)
Solution: (Using Priority Queue)
class Solution
{
public:
int findKthLargest(vector<int> &nums, int k)
{
priority_queue<int, vector<int>> pq(nums.begin(), nums.end());
for (int i = 1; i < k; i++)
{
pq.pop();
}
return pq.top();
}
};
Solution: (Quick Select)
Similar algorithm to quick sort
class Solution
{
public:
int findPivot(vector<int> &nums, int start, int end)
{
int pvt = nums[end];
int k = start;
for (int i = start; i < end; i++)
{
if (nums[i] < pvt)
{
swap(nums[i], nums[k]);
k++;
}
}
swap(nums[k], nums[end]);
return k;
}
int quickSelect(vector<int> &nums, int start, int end, int k)
{
if (start > end)
{
return -1;
}
int p = findPivot(nums, start, end);
if (p == k)
{
return p;
}
if (p < k)
{
return quickSelect(nums, p + 1, end, k);
}
else if (p > k)
{
return quickSelect(nums, start, p - 1, k);
}
return -1;
}
int findKthLargest(vector<int> &nums, int k)
{
int n = nums.size();
int res = quickSelect(nums, 0, n - 1, n-k);
return nums[res];
return res;