4. Maximum Absolute Sum of Any Subarray
You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
If
x
is a negative integer, thenabs(x) = -x
.If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Solution: (Using Kadane's Algorithm)
Approach: Finding the max Sum possible Finding the min sum possible Checking the max.
class Solution
{
public:
int maxAbsoluteSum(vector<int> &nums)
{
int s = 0;
int maxSum = INT_MIN;
int minSum = INT_MAX;
//Finding the max sum subarray
for (int i = 0; i < nums.size(); i++)
{
s += nums[i];
if (s > maxSum)
{
maxSum = s;
}
if (s < 0)
{
s = 0;
}
}
//Finding the min sum subarray
s = 0;
for (int i = 0; i < nums.size(); i++)
{
s += nums[i];
if (s < minSum)
{
minSum = s;
}
if (s > 0)
{
s = 0;
}
}
return max(maxSum, abs(minSum));
}
};
Time Complexity: O(n)
Last updated
Was this helpful?