This solution uses unordered_multimaps to handle the same values.
Time Complexity O(n).
class Solution
{
public:
vector<int> twoSum(vector<int> &nums, int target)
{
vector<int> v;
unordered_multimap<int, int> m;
for (int i = 0; i < nums.size(); i++)
{
m.insert({nums[i], i});
}
for (int i = 0; i < nums.size(); i++)
{
int tar = target - nums[i];
if (tar != nums[i])
{
if (m.find(tar) != m.end())
{
auto a = m.find(nums[i]);
auto b = m.find(tar);
v.push_back(a->second);
v.push_back(b->second);
break;
}
}
else
{
if (m.count(tar) > 1)
{
auto a = m.equal_range(tar);
for (auto it =a.first; it != a.second; it++) {
v.push_back(it->second);
}
break;
}
}
}
return v;
}
};
2. This solution uses unordered_maps and vector.Time Complexity O(n).
class Solution
{
public:
vector<int> twoSum(vector<int> &nums, int target)
{
vector<int> v;
unordered_map<int, vector<int>> m;
for (int i = 0; i < nums.size(); i++)
{
m[nums[i]].push_back(i);
}
for (int i = 0; i < nums.size(); i++)
{
int dif = target - nums[i];
if (dif == nums[i])
{
vector<int> k = m[nums[i]];
if (k.size() == 2)
{
v.push_back(k[0]);
v.push_back(k[1]);
break;
}
}
else if (m.find(dif) != m.end())
{
vector<int> k1 = m[nums[i]];
vector<int> k2 = m[dif];
v.push_back(k1[0]);
v.push_back(k2[0]);
break;
}
}
return v;
}
};
Two Sum II - Input array is sorted
Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number.
class Solution
{
public:
vector<int> twoSum(vector<int> &nums, int target)
{
int i = 0;
vector<int> v;
int start = 0;
int end = nums.size() - 1;
while (start < end)
{
if (((nums[start] + nums[end]) - target) > 0 )
{
end--;
}
else if(((nums[start] + nums[end]) - target) < 0 )
{
start++;
}
else{
v.push_back(start+1);
v.push_back(end+1);
break;
}
}
return v;
}
};
Using Two Poiner method:Time Complexity O(n) , Space Complexity: O(1)