The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.
Example 1:
Input: n = 4
Output: [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above
Example 2:
Input: n = 1
Output: [["Q"]]
Solution: (Backtracking)
Approach:
Try each possible cell and check if it is safe or not
check for row, col, diagonal
Diagonal Formula = row + col and row - col
classSolution{public: vector<vector<string>> res;boolisSafe(int row,int col,int n,vector<vector<int>> &v) {for (int i =0; i < n; i++) {for (int j =0; j < n; j++) {if (v[i][j] ==1) {if (i == row || j == col || row + col == i + j || row - col == i - j) {returnfalse; } } } }returntrue; }voidfindPos(int row,int n,vector<vector<int>> &v) {if (row == n) { vector<string> k;for (int i =0; i < n; i++) { string s ="";for (int j =0; j < n; j++) {if (v[i][j] ==1) { s = s +'Q'; }else { s = s +'.'; } }k.push_back(s); }res.push_back(k);return; }for (int i =0; i < n; i++) {if (isSafe(row, i, n, v)) {v[row][i] =1;findPos(row +1, n, v);v[row][i] =0; } }return; }vector<vector<string>> solveNQueens(int n) { vector<vector<int>>v(n,vector<int>(n,0));findPos(0, n, v);return res; }};