In a given grid, each cell can have one of three values:
the value 0 representing an empty cell;
the value 1 representing a fresh orange;
the value 2 representing a rotten orange.
Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1 instead.
Example 1:
Input: [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:
Input: [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Solution: (Queue + BFS)
Approach:
There can be multiple '2'/ Starting point .
So we initially push all the '2' in a queue and Perform BFS with time
class Solution
{
public:
int bfs(vector<vector<int>> &grid, queue<pair<int, pair<int, int>>> q)
{
int n = grid.size();
int m = grid[0].size();
int time = 0;
while (!q.empty())
{
time = q.front().first;
int i = q.front().second.first;
int j = q.front().second.second;
q.pop();
if (i - 1 >= 0 && grid[i - 1][j] == 1)
{
q.push({time + 1, {i - 1, j}});
grid[i - 1][j] = 2;
}
if (i + 1 < n && grid[i + 1][j] == 1)
{
q.push({time + 1, {i + 1, j}});
grid[i + 1][j] = 2;
}
if (j - 1 >= 0 && grid[i][j - 1] == 1)
{
q.push({time + 1, {i, j - 1}});
grid[i][j - 1] = 2;
}
if (j + 1 < m && grid[i][j + 1] == 1)
{
q.push({time + 1, {i, j + 1}});
grid[i][j + 1] = 2;
}
}
return time;
}
int orangesRotting(vector<vector<int>> &grid)
{
int n = grid.size();
int m = grid[0].size();
queue<pair<int, pair<int, int>>> q;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
if (grid[i][j] == 2)
{
q.push({0, {i, j}});
}
}
}
int count = bfs(grid, q);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
if (grid[i][j] == 1)
{
return -1;
}
}
}
return count;
}
};