You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
Solution: (Using Prefix Sum on tree)
class Solution
{
public:
unordered_map<int, int> m;
int count = 0;
void traverse(TreeNode *root, int sum, int target)
{
if (root == NULL)
{
return;
}
int s = sum + root->val;
if (s == target)
{
count++;
}
if (m.find(s - target) != m.end())
{
count += m[s - target];
}
m[s]++;
traverse(root->left, s, target);
traverse(root->right, s, target);
m[s]--;
return;
}
int pathSum(TreeNode *root, int sum)
{
if (root == NULL)
{
return 0;
}
traverse(root, 0, sum);
return count;
}
};