Given arrival and departure times of all trains that reach a railway station. Find the minimum number of platforms required for the railway station so that no train is kept waiting. Consider that all the trains arrive on the same day and leave on the same day. Arrival and departure time can never be the same for a train but we can have arrival time of one train equal to departure time of the other.
Example 1:
Input: N = 6
arr[] = [0900 0940 0950 1100 1500 1800]
dep[] = [0910 1200 1120 1130 1900 2000]
Output: 3
Explanation:
Minimum 3 platforms are required to
safely arrive and depart all trains.
Example 2:
Input: N = 3
arr[] = [0900 1100 1235]
dep[] = [1000 1200 1240]
Output: 1
Explanation: Only 1 platform is required to
safely manage the arrival and departure
of all trains.
Solution: (Efficient Solution)
Approach:
Sort the arrival and departure time
Check the number of trains arriving at same time
void merge(int arr[], int start, int mid, int end)
{
vector<int> la;
vector<int> ra;
for (int i = start; i <= mid; i++)
{
la.push_back(arr[i]);
}
for (int i = mid + 1; i <= end; i++)
{
ra.push_back(arr[i]);
}
int i = 0, j = 0, k = start;
while (i < la.size() && j < ra.size())
{
if (la[i] <= ra[j])
{
arr[k] = la[i];
i++;
}
else
{
arr[k] = ra[j];
j++;
}
k++;
}
while (i < la.size())
{
arr[k] = la[i];
i++;
k++;
}
while (j < ra.size())
{
arr[k] = ra[j];
j++;
k++;
}
return;
}
void sort(int arr[], int start, int end)
{
if (start >= end)
{
return;
}
int mid = (start + end) / 2;
sort(arr, start, mid);
sort(arr, mid + 1, end);
merge(arr, start, mid, end);
return;
}
int findPlatform(int arr[], int dep[], int n)
{
sort(arr, 0, n - 1);
sort(dep, 0, n - 1);
int i = 1;
int j = 0;
int numPlat = 1;
int maxPlat = 1;
while (i < n && j < n)
{
if (arr[i] <= dep[j])
{
i++;
numPlat++;
}
else if (arr[i] > dep[j])
{
numPlat--;
j++;
}
maxPlat = max(numPlat, maxPlat);
}
return maxPlat;
}